PRISM™
REFINING AND MARKETING
INDUSTRY ANALYSIS SYSTEM

PRODUCT DESCRIPTION

Baker & O’Brien, Inc.
1333 West Loop South
Suite 1350
Houston, Texas 77027
INTRODUCTION

Baker & O'Brien, Inc.’s PRISM™ modeling system is a powerful tool for analysis of refineries and the refining and marketing supply chain. Initially conceived and developed over 20 years ago, the PRISM system has been updated and expanded into one of the most flexible and comprehensive refining industry analysis tools available on the market today. The PRISM system combines a large historical technical/economic database (the “Database”) with a robust refinery simulator (the “Simulator”) and several crude assay and crude blending tools. The Database includes extensive information on:

- Refinery processing capacities;
- Refinery configurations and process technologies;
- Crude and intermediate feedstock runs;
- Product slates and qualities;
- Product distribution and sales patterns;
- Operating costs;
- Crude and product logistics;
- Carbon dioxide emissions;
- Transportation costs; and
- Financial performance.

The PRISM software is offered on a license-only basis. Licensees have the option of subscribing to any or all of the four PRISM Data Services that cover a total of 271 operational refineries: \(^1\) the United States Data Service (USDS), the Canadian Data Service (CANDS), the European Data Service (EDS), and the Asia-Pacific Data Service (APDS). The USDS includes information for essentially all operating petroleum refineries in the United States (U.S.). The USDS is updated quarterly, and historical data is available back to 2010. CANDS, EDS, and APDS are updated annually. CANDS includes all Canadian refineries, and data are available beginning with

\[^{\text{TM}}\] PRISM is a trademark of Baker & O'Brien, Inc. All rights reserved.

\(^1\) Operational as of January 1, 2018.
calendar year 2011. The EDS includes Europe west of Russia, plus Turkey, Israel, and Saudi Arabia. It begins with data for 2012 and includes the 92 refineries listed in Appendix A. Refineries in the EDS represent 90% of regional refining capacity. The APDS covers 77 refineries beginning with 2011 data (see Appendix B). Licensees are also able to build their own models of refineries not included in our subscription services.

No confidential data is solicited from PRISM Data Service subscribers. The Data Services are based on publicly-available data, filtered and enhanced with the experience and judgment of Baker & O’Brien’s consulting staff. As a result, the Data Services provide detailed information on individual refineries.

Calculations are performed using the PRISM Simulator (part of the software provided to PRISM licensees). The PRISM Simulator employs a non-linear, deterministic approach, although several linear programming (LP) sub-routines are used for refinery product blending optimization. The Simulator strikes a balance between technical sophistication and ease-of-use.

PRISM subscribers are able to review, supplement, and/or revise the data provided for individual refineries and, using the PRISM Simulator, make their own analyses. PRISM licensees use the model for a wide variety of purposes. It has proven to be especially useful and valuable in the following areas:

- Crude oil marketing and trading;
- Screening of potential refinery acquisitions;
- Competitive benchmarking;
- Evaluating the impact of new environmental regulations;
- Evaluating carbon dioxide (CO2) emissions;
- Screening new feedstocks;
- Screening new configurations for existing or grassroots refineries;
- Evaluating bitumen upgrading schemes;
- Refinery hydrogen balance analysis;

2 84 of the 92 refineries were operating in 2017.
3 APDS includes 19 North American and 2 South American refineries. 71 of the 77 refineries were operating in 2017.
• Analysis of capital investments;

• Benchmarking of refining costs and margins;

• Operations analysis;

• Regional analysis of product markets;

• Crude and product pipeline capacity utilization studies;

• Wholesale market strategy rationalization; and

• Product netback analysis.

Current PRISM software licensees include integrated international oil companies, independent refiners, crude and synthetic crude oil producers, crude and product traders, industrial gas producers, pipeline companies, and refinery technology licensors. Thirteen refining companies license the PRISM system, including eight of the top ten largest North American refining companies. There are PRISM users in Asia, Europe, North and South America.
REFINING INDUSTRY STUDIES

The PRISM U.S. Data Service includes detailed estimates of individual refinery operations and financial performance. Because the data are derived from public sources, individual refineries can be named. The data includes unit capacities, configurations, operating parameters, refinery crude slates, feedstock purchases, yields, and product distribution. Variable expenses such as fuel, electricity, steam, and hydrogen, and fixed costs including employee head counts are estimated. Turnaround activity, unplanned unit outages, shutdowns, and new construction are monitored to keep the PRISM Database current. Starting in 2018, refinery operating data provided by Genscape International, Inc. is used in the analysis.

FIGURE 1
MULTI-REFINERY FINANCIAL REPORT

FINANCIAL RESULTS
US : Qtr 20

<table>
<thead>
<tr>
<th>Refinery</th>
<th>Total Input MBPCD</th>
<th>Crude °API</th>
<th>Crude Sulfur wt. %</th>
<th>Complex Factor</th>
<th>US Dollars Per Barrel of Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gross Margin</td>
</tr>
<tr>
<td>Refinery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.57</td>
</tr>
<tr>
<td>Wilmington, CA</td>
<td>0.0</td>
<td>22.37</td>
<td>2.91%</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td>Refinery</td>
<td></td>
<td>24.32</td>
<td>2.41%</td>
<td>17.7</td>
<td>12.53</td>
</tr>
<tr>
<td>Wilmington, CA</td>
<td>0.7</td>
<td>19.51</td>
<td>3.98%</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>Refinery</td>
<td></td>
<td>29.10</td>
<td>0.88%</td>
<td>18.3</td>
<td>12.68</td>
</tr>
<tr>
<td>Wilmington, CA</td>
<td>0.9</td>
<td>25.58</td>
<td>1.21%</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>Refinery</td>
<td></td>
<td>10.92</td>
<td>5.18</td>
<td>5.74</td>
<td>3.38</td>
</tr>
<tr>
<td>Martinez, CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.92</td>
</tr>
</tbody>
</table>

Note: Company names are displayed in the actual PRISM report.

PRISM licensees use the database to measure the performance of individual refineries against any grouping of competitors. PRISM data are current so performance can be tracked on an on-going basis. Users can analyze financial and operational trends and perform screening studies to support merger and acquisition activities.
Since the PRISM Database is kept up-to-date, it provides an ideal starting point for investment studies, analysis of changing fuel specifications, and market demand patterns. Licensees have used the PRISM system to analyze the regional impact of regulatory changes in product specification (i.e., diesel sulfur and gasoline benzene levels), green-house gas regulations, and the survivability of individual refineries. Figure 3 is from a report that Baker & O’Brien performed on behalf of a major industry association. Using the PRISM system, we measured the costs of pending gasoline rules on a refinery-by-refinery basis and generated the supply curve shown below.
CARBON DIOXIDE EMISSIONS

The imposition of CO₂ emissions limits and credit trading schemes has added a new dimension to refinery economic analysis. The PRISM Refinery Simulator calculates CO₂ emissions based on crude slates, throughput, and other operational factors. Refiners and traders can:

- Compare the emissions of individual refineries;
- Evaluate the impact of changes in crude slate or other operating changes on emissions; and
- Calculate the value of CO₂ credits to individual refineries.

FIGURE 4
CO₂ EMISSIONS FROM SELECTED CANADIAN REFINERIES

<table>
<thead>
<tr>
<th>Operations Summary – Canada</th>
<th>Company A Alberta Canada</th>
<th>Company B Maritimes Canada</th>
<th>Company C Ontario Canada</th>
<th>Company D Maritimes Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 Tonne/yr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ EMISSIONS</td>
<td>1,975</td>
<td>598</td>
<td>1,239</td>
<td>4,149</td>
</tr>
<tr>
<td>CO₂ from Fluid Catalytic Cracking</td>
<td>1,039</td>
<td>276</td>
<td>371</td>
<td>1,458</td>
</tr>
<tr>
<td>CO₂ from Steam Methane Reforming</td>
<td>447</td>
<td>237</td>
<td>228</td>
<td>601</td>
</tr>
<tr>
<td>CO₂ from Plant Fuel Gas Consumed</td>
<td>278</td>
<td>458</td>
<td>1,398</td>
<td></td>
</tr>
<tr>
<td>CO₂ from Liquid Fuel Consumed</td>
<td>211</td>
<td>85</td>
<td>181</td>
<td>399</td>
</tr>
<tr>
<td>CO₂ from Purchased Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Associated w/Purchased Electricity</td>
<td>211</td>
<td>85</td>
<td>181</td>
<td>399</td>
</tr>
</tbody>
</table>
CRUDE OIL ECONOMICS AND MARKETING

The PRISM system is an excellent tool for evaluating crude oil substitution economics. Support of crude oil marketing and trading groups is one of its major uses. Because the PRISM Databases include capacity, configuration, and current crude slate data, it is ideal for selecting target refineries for crude marketing campaigns. It is easy to calculate crude economics and evaluate combined capital investment and crude slate changes (i.e., the addition of a coker or hydrocracker combined with a shift to heavier, more-sour crude oils).
FIGURE 5

VALUE OF URALS IN A NORTHWESTERN EUROPEAN REFINERY

<table>
<thead>
<tr>
<th>Crude</th>
<th>Base</th>
<th>Alternate</th>
<th>Change</th>
<th>PRICE US $</th>
<th>Cash US $000/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baerath Light 33.0</td>
<td>25,316</td>
<td>25,316</td>
<td>0</td>
<td>87.94</td>
<td>455</td>
</tr>
<tr>
<td>Es Sider 36.3</td>
<td>3,824</td>
<td>3,824</td>
<td>0</td>
<td>92.17</td>
<td>119</td>
</tr>
<tr>
<td>NKossa Swt 41.3</td>
<td>5,666</td>
<td>5,666</td>
<td>0</td>
<td>87.35</td>
<td>(260)</td>
</tr>
<tr>
<td>Oseberg 35.9</td>
<td>12,440</td>
<td>12,440</td>
<td>0</td>
<td>90.90</td>
<td>109</td>
</tr>
<tr>
<td>Sirri 33.4</td>
<td>60,670</td>
<td>60,670</td>
<td>0</td>
<td>91.78</td>
<td>8</td>
</tr>
<tr>
<td>Urals 31.8</td>
<td>183,638</td>
<td>203,638</td>
<td>20,000</td>
<td>666.47</td>
<td>179</td>
</tr>
<tr>
<td>TOTAL CRUDE</td>
<td>291,554</td>
<td>311,554</td>
<td>20,000</td>
<td>31.05</td>
<td>621</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Feedstocks</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen (FOE)</td>
<td>4,234</td>
<td>4,581</td>
<td>347</td>
<td>107.15</td>
<td>37</td>
</tr>
<tr>
<td>Ethanol</td>
<td>2,107</td>
<td>2,107</td>
<td>0</td>
<td>91.69</td>
<td>0</td>
</tr>
<tr>
<td>Isobutane</td>
<td>1,895</td>
<td>1,644</td>
<td>(251)</td>
<td>59.14</td>
<td>(15)</td>
</tr>
<tr>
<td>BioDiesel</td>
<td>4,077</td>
<td>4,081</td>
<td>4</td>
<td>144.86</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL OTHER FEEDSTOCKS</td>
<td>12,313</td>
<td>12,413</td>
<td>100</td>
<td>1.15</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light Oil Products</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EURO 10ppm 95 RON</td>
<td>33,554</td>
<td>38,728</td>
<td>5,175</td>
<td>87.94</td>
<td>455</td>
</tr>
<tr>
<td>EURO 10ppm 98 RON</td>
<td>8,388</td>
<td>9,682</td>
<td>1,294</td>
<td>92.17</td>
<td>119</td>
</tr>
<tr>
<td>EURO 10ppm E5 BOB 95 RON</td>
<td>11,859</td>
<td>8,893</td>
<td>(2,975)</td>
<td>87.35</td>
<td>(260)</td>
</tr>
<tr>
<td>US RBOB E10 Reg</td>
<td>2,965</td>
<td>2,221</td>
<td>(744)</td>
<td>93.56</td>
<td>(70)</td>
</tr>
<tr>
<td>Jet A-1</td>
<td>17,493</td>
<td>18,693</td>
<td>1,200</td>
<td>90.90</td>
<td>109</td>
</tr>
<tr>
<td>EURO Diesel 10 ppm</td>
<td>79,095</td>
<td>79,177</td>
<td>82</td>
<td>91.78</td>
<td>8</td>
</tr>
<tr>
<td>EURO L Heating Oil 1000 ppm</td>
<td>33,529</td>
<td>35,829</td>
<td>2,300</td>
<td>666.47</td>
<td>179</td>
</tr>
<tr>
<td>TOTAL LIGHT OIL PRODUCTS</td>
<td>205,703</td>
<td>212,946</td>
<td>7,243</td>
<td>31.05</td>
<td>621</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Products</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane</td>
<td>6,687</td>
<td>7,215</td>
<td>528</td>
<td>51.83</td>
<td>27</td>
</tr>
<tr>
<td>Normal Butane</td>
<td>5,735</td>
<td>6,121</td>
<td>386</td>
<td>57.68</td>
<td>22</td>
</tr>
<tr>
<td>Mixed BB</td>
<td>3,801</td>
<td>5,079</td>
<td>1,278</td>
<td>79.75</td>
<td>102</td>
</tr>
<tr>
<td>Propylene-Refinery Grade</td>
<td>7,952</td>
<td>8,508</td>
<td>556</td>
<td>103.53</td>
<td>58</td>
</tr>
<tr>
<td>Benzene</td>
<td>365</td>
<td>382</td>
<td>17</td>
<td>133.26</td>
<td>2</td>
</tr>
<tr>
<td>Toluene</td>
<td>3,832</td>
<td>3,997</td>
<td>165</td>
<td>113.00</td>
<td>19</td>
</tr>
<tr>
<td>Mixed Xylenes</td>
<td>6,308</td>
<td>6,577</td>
<td>269</td>
<td>115.52</td>
<td>31</td>
</tr>
<tr>
<td>Light Naphtha</td>
<td>20,874</td>
<td>21,197</td>
<td>323</td>
<td>89.62</td>
<td>29</td>
</tr>
<tr>
<td>Heavy Naphtha</td>
<td>1,310</td>
<td>1,310</td>
<td>0</td>
<td>78.61</td>
<td>103</td>
</tr>
<tr>
<td>Aromatic Raffinate</td>
<td>7,454</td>
<td>7,798</td>
<td>344</td>
<td>84.90</td>
<td>29</td>
</tr>
<tr>
<td>Sour VGO (>75% S)</td>
<td>7,931</td>
<td>7,931</td>
<td>0</td>
<td>78.25</td>
<td>621</td>
</tr>
<tr>
<td>Resid Fuel Oil-S Varies</td>
<td>36,690</td>
<td>36,242</td>
<td>(448)</td>
<td>450.10</td>
<td>(32)</td>
</tr>
<tr>
<td>Sulfur (FOE)</td>
<td>590</td>
<td>624</td>
<td>34</td>
<td>120.90</td>
<td>3</td>
</tr>
<tr>
<td>Produced Fuel Gas (FOE)</td>
<td>7,220</td>
<td>9,471</td>
<td>2,251</td>
<td>45.80</td>
<td>103</td>
</tr>
<tr>
<td>TOTAL OTHER PRODUCTS</td>
<td>107,509</td>
<td>122,455</td>
<td>14,945</td>
<td>55.86</td>
<td>1,117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utilities</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel-Produced (MMBTU)</td>
<td>45,485</td>
<td>49,018</td>
<td>3,533</td>
<td>7.27</td>
<td>26</td>
</tr>
<tr>
<td>Fuel-Purchased (MMBTU)</td>
<td>71,185</td>
<td>75,726</td>
<td>4,542</td>
<td>7.27</td>
<td>33</td>
</tr>
<tr>
<td>Electric Power (MW-h)</td>
<td>5,5</td>
<td>5</td>
<td>95.92</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cooling Water Make-up (kcal)</td>
<td>4,635</td>
<td>4,878</td>
<td>242</td>
<td>0.20</td>
<td>0</td>
</tr>
<tr>
<td>Process Water (kcal)</td>
<td>464</td>
<td>488</td>
<td>24</td>
<td>0.50</td>
<td>0</td>
</tr>
<tr>
<td>Boiler Feed Water (kcal)</td>
<td>1,941</td>
<td>2,067</td>
<td>126</td>
<td>2.50 kcal</td>
<td>0</td>
</tr>
<tr>
<td>Catalyst and Chemicals (US $)</td>
<td>81,915</td>
<td>87,976</td>
<td>6,061</td>
<td>1.00 US $</td>
<td>6</td>
</tr>
<tr>
<td>CO2 Emissions (Tonne)</td>
<td>10,247</td>
<td>11,053</td>
<td>806</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL UTILITIES</td>
<td>3.28</td>
<td>4.28</td>
<td>1,000</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRUDE VALUE</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82.47</td>
<td>/B-Urals</td>
<td>1,649</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The *PRISM* software package includes a Crude Assay Library containing over 340 assays as shown in Appendix C. As part of the Data Services, new crude assays continue to be added to the library. Licensees can add assays to their proprietary copy of the *PRISM* Crude Assay Library with the easy-to-use *PRISM* Crude Assay Director.
The PRISM Crude Assay Blend Optimizer uses an LP solver to blend crude to meet user defined crude properties. It is primarily used by crude oil traders to determine the most profitable mix of component crudes that will meet industry specifications for crude blends such as Louisiana Light Sweet (LLS) or West Texas Intermediate (WTI).

The PRISM industry model includes not only the refineries but also the crude transportation system. Pipeline and tanker routes are modeled, and utilization rates and logistical constraints can be analyzed. Figure 6 illustrates pipeline flow detail.

FIGURE 6

CRUDE PIPELINE TRANSPORTATION DETAIL
PRODUCT SUPPLY AND MARKETING ANALYSIS

The PRISM industry model includes the distribution system extending from refineries to and including unbranded wholesale terminals or spot markets. The PRISM U.S. Data Service includes approximately 85 product markets. The distribution model includes current and historical transportation routes and costs. Most of the published common carrier product pipeline tariffs are included in the Database. **Figure 7** illustrates the detail provided.

FIGURE 7
PRODUCT TRANSPORTATION DETAIL

The PRISM Database has the ability to track pipeline capacity. Pipeline throughputs are calculated, and the PRISM system can be used to analyze distribution system utilization and constraints.
PRISM calculates the delivered cost of products to each of the terminals in the PRISM model. This allows users to analyze marketing economics and evaluate product exchange opportunities. Figure 8 shows the delivered cost of product to Los Angeles and the estimated volumes supplied by individual refineries.

FIGURE 8

COST OF GASOLINE DELIVERED TO NEW YORK

<table>
<thead>
<tr>
<th>Delivered Cost - NY-NY Spot</th>
<th>2012 Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>US RBOB E10 Reg</td>
<td>Cost at Source</td>
</tr>
<tr>
<td>GBR-Humberside: Phillips 66</td>
<td>xxx</td>
</tr>
<tr>
<td>GBR-Stanlow: Essar</td>
<td>xxx</td>
</tr>
<tr>
<td>PRT-Sines: GALP</td>
<td>xxx</td>
</tr>
<tr>
<td>NLD-Pernis: Shell</td>
<td>xxx</td>
</tr>
<tr>
<td>FIN-Porvoo: Neste</td>
<td>xxx</td>
</tr>
<tr>
<td>BEL-AN-Antwerp: Total</td>
<td>xxx</td>
</tr>
<tr>
<td>ITA-Sarroch: Saras</td>
<td>xxx</td>
</tr>
<tr>
<td>NLD-Vlissingen: Zeeland</td>
<td>xxx</td>
</tr>
<tr>
<td>NLD-Europoort: BP</td>
<td>xxx</td>
</tr>
<tr>
<td>ESP-Castellon de la Plana: BP</td>
<td>xxx</td>
</tr>
<tr>
<td>FRA-Grandpuits: Total</td>
<td>xxx</td>
</tr>
<tr>
<td>ITA-Gela: Eni</td>
<td>xxx</td>
</tr>
<tr>
<td>NLD-Rotterdam: ExxonMobil</td>
<td>xxx</td>
</tr>
<tr>
<td>NOR-Slagen: ExxonMobil</td>
<td>xxx</td>
</tr>
<tr>
<td>ITA-Milazzo: Raff di Milazzo</td>
<td>xxx</td>
</tr>
<tr>
<td>BEL-AN-Antwerp: ExxonMobil</td>
<td>xxx</td>
</tr>
<tr>
<td>ITA-Priolo-Melilli: ISAB</td>
<td>xxx</td>
</tr>
</tbody>
</table>

Quantities and costs are displayed in the actual PRISM report.

PRISM is also used to evaluate the product supply implications of process unit shutdowns and refinery interruptions. Beginning with Baker & O’Brien’s most recent production estimate, it is easy to simulate the effect of a shutdown of a coker, FCC, or other major unit on the availability of products from any refinery.
TECHNICAL DESCRIPTION

The relationship of the core PRISM system components is illustrated in Figure 9 (The Crude Assay Viewer and Crude Assay Blend Optimizer are not shown). Each of the components is described in more detail in the following sections.

FIGURE 9

PRISM SYSTEM COMPONENT RELATIONSHIPS

- Refinery Simulator (Microsoft Excel)
 - Open Microsoft Excel Based Simulator
 - One of “Every” Type of Unit
 - Non-linear Unit Models
 - LP Blending of Gasoline and Distillates
 - Automated Data Transfer to/from Access Database

- User Interface (Menu System)

- Crude Assay Director (Microsoft Excel)
 - Data entry system for PRISM assay library
 - Use Properties from Similar Crudes to Supplement Available Data
 - Curve-fit Property Data and Generate Coefficients

- Data Files (Microsoft Access)

PRISM DATA MODULES

The PRISM Industry Model includes crude oil at the load port or initial pipeline injection point, refineries, unbranded wholesale terminals, and the transportation systems that connects them. Baker & O’Brien is continuously collecting information on the refining and marketing industry including:

- Refinery configuration;
- Construction and turnaround plans and costs;
- Refinery and marketing operating costs;
• Crude pricing, supply and logistics;
• Crude and product transportation costs;
• Product distribution logistics and costs; and
• Product pricing for both spot and rack markets.

Sources include a wide variety of industry publications, government agency reports, and published company information, filtered with the expertise and judgment of Baker & O’Brien consultants. On a quarterly (U.S.) or annual (other regions) basis, this information is processed using the PRISM Simulator to generate estimates of refinery operations and profitability on an individual refinery basis. The data are published to PRISM Data Service subscribers in Microsoft® Access data files (PRISM Data Modules).

The Data Module structure is designed to allow users to collect and disseminate industrial intelligence within an organization. Baker & O’Brien's published Data Module contains quarterly (U.S.) or annual averages, but users may create daily, weekly, monthly, or any other time frame to meet their requirements. The PRISM software includes a utility for aggregating the quarterly data into annual averages or any other grouping. Users may supplement the published data, adding refineries, product terminals, crudes, or any other data required for special studies.

USER INTERFACE

The PRISM User Interface is a user-friendly, intuitive tool that guides the user to the data of interest or through the process of configuring and executing a Simulator run. Examples of the interface screens are shown in Figure 10 and Figure 11.
FIGURE 10

REFINERY MENU

There are 722 refineries in the PRISM database. As of 23-Aug-13:
26 are planned, but not yet operational.
58 are permanently closed.
67 are modeled (have capacity/configuration data) in the
2012 Europe data module. All 67 have been simulated.
Only the modeled refineries are shown in the list. Ownership is as of 23-Aug-13.

Use the check boxes to select multiple refineries.

FIGURE 11

PROCESS DETAILS

Jan-01 (company website): Two trains—a high TAN train that started up in 1996 has an
atmospheric towers and a vacuum tower. The other train has an atmospheric tower and two
vacuum towers that operate in series.
The User Interface module includes over a dozen predefined reports that can be accessed by the click of a button. Reports can be generated for individual refineries or any grouping of interest. An example report is shown below (Figure 12).
FIGURE 12

PRISM REFINERY MARGIN REPORT

Northwest European Refinery

<table>
<thead>
<tr>
<th>Description</th>
<th>Liquid Sp. Gr</th>
<th>Quantity</th>
<th>PRICE</th>
<th>Cash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arzew 45.0</td>
<td>0.8015</td>
<td>110</td>
<td>55.09</td>
<td>48</td>
</tr>
<tr>
<td>Bonny Light 35.1</td>
<td>0.8484</td>
<td>386</td>
<td>56.11</td>
<td>161</td>
</tr>
<tr>
<td>DUC 34.8</td>
<td>0.8507</td>
<td>827</td>
<td>55.91</td>
<td>342</td>
</tr>
<tr>
<td>Eagle Ford Condinst 59.8</td>
<td>0.7397</td>
<td>184</td>
<td>47.50</td>
<td>74</td>
</tr>
<tr>
<td>Forties 40.3 [2007]</td>
<td>0.8235</td>
<td>318</td>
<td>54.21</td>
<td>132</td>
</tr>
<tr>
<td>Gullfaks 27.5</td>
<td>0.8371</td>
<td>7,980</td>
<td>55.55</td>
<td>3,334</td>
</tr>
<tr>
<td>Sleipner Condensate 59.8</td>
<td>0.7395</td>
<td>2,291</td>
<td>48.50</td>
<td>946</td>
</tr>
<tr>
<td>Urals 31.8</td>
<td>0.8662</td>
<td>1,855</td>
<td>52.88</td>
<td>713</td>
</tr>
<tr>
<td>TOTAL CRUDE</td>
<td>13,951</td>
<td>106,852</td>
<td>53.81</td>
<td>5,750</td>
</tr>
<tr>
<td>Other Feedstocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Natural Gas</td>
<td>1</td>
<td>4</td>
<td>36.86</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>41</td>
<td>879</td>
<td>86.24</td>
<td>76</td>
</tr>
<tr>
<td>BioDiesel-FAME</td>
<td>0.8750</td>
<td>448</td>
<td>125.45</td>
<td>405</td>
</tr>
<tr>
<td>ETBE</td>
<td>0.7527</td>
<td>418</td>
<td>110.55</td>
<td>387</td>
</tr>
<tr>
<td>Alkyate</td>
<td>0.6960</td>
<td>553</td>
<td>66.96</td>
<td>335</td>
</tr>
<tr>
<td>TOTAL OTHER FEEDSTOCKS</td>
<td>1,461</td>
<td>12,610</td>
<td>95.36</td>
<td>1,202</td>
</tr>
<tr>
<td>TOTAL INPUTS</td>
<td>15,412</td>
<td>119,462</td>
<td>58.20</td>
<td>6,952</td>
</tr>
<tr>
<td>Light Oil Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EURO 10ppm 95 RON</td>
<td>0.7196</td>
<td>2,366</td>
<td>70.38</td>
<td>1,457</td>
</tr>
<tr>
<td>EURO 10ppm 98 RON</td>
<td>0.7523</td>
<td>314</td>
<td>79.17</td>
<td>208</td>
</tr>
<tr>
<td>EURO 10ppm E5 BOB 95 R</td>
<td>0.7576</td>
<td>1,964</td>
<td>69.26</td>
<td>1,100</td>
</tr>
<tr>
<td>EURO Diesel 10 ppm</td>
<td>0.8200</td>
<td>6,793</td>
<td>69.72</td>
<td>3,636</td>
</tr>
<tr>
<td>EURO LI Heating Oil 1000 pt</td>
<td>0.8277</td>
<td>281</td>
<td>491.40</td>
<td>138</td>
</tr>
<tr>
<td>TOTAL LIGHT OIL PRODUCTS</td>
<td>11,719</td>
<td>93,952</td>
<td>69.93</td>
<td>6,570</td>
</tr>
<tr>
<td>Other Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propane</td>
<td>0.5102</td>
<td>124</td>
<td>36.75</td>
<td>56</td>
</tr>
<tr>
<td>Isobutane</td>
<td>0.5634</td>
<td>106</td>
<td>40.32</td>
<td>48</td>
</tr>
<tr>
<td>Normal Butane</td>
<td>0.5841</td>
<td>179</td>
<td>40.78</td>
<td>79</td>
</tr>
<tr>
<td>LSR Naphtha</td>
<td>0.6836</td>
<td>391</td>
<td>62.83</td>
<td>226</td>
</tr>
<tr>
<td>Asphalt</td>
<td>0.9644</td>
<td>369</td>
<td>57.63</td>
<td>113</td>
</tr>
<tr>
<td>Resid Fuel Oil-S Varies</td>
<td>0.9950</td>
<td>2,088</td>
<td>297.67</td>
<td>622</td>
</tr>
<tr>
<td>Sulfur</td>
<td>20</td>
<td>28</td>
<td>126.98</td>
<td>3</td>
</tr>
<tr>
<td>Produced Fuel Gas</td>
<td>222</td>
<td>1,789</td>
<td>42.92</td>
<td>1,146</td>
</tr>
<tr>
<td>Produced Fuel Liquid</td>
<td>0.9950</td>
<td>232</td>
<td>42.92</td>
<td>1,146</td>
</tr>
<tr>
<td>Refinery Loss</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Vent Gases</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL OTHER PRODUCTS</td>
<td>3,693</td>
<td>26,699</td>
<td>42.92</td>
<td>1,146</td>
</tr>
<tr>
<td>TOTAL PRODUCTS</td>
<td>15,412</td>
<td>120,651</td>
<td>63.95</td>
<td>7,716</td>
</tr>
<tr>
<td>GAIN/(LOSS)</td>
<td>0</td>
<td>1,189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROSS MARGIN</td>
<td>6.39</td>
<td></td>
<td></td>
<td>764</td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel-Produced</td>
<td>20,500</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fuel-Purchased</td>
<td>25,459</td>
<td>5.85</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Electric Power</td>
<td>499</td>
<td>54.93</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Coding Water Make-up</td>
<td>1,599</td>
<td>0.20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Process Water</td>
<td>160</td>
<td>0.50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Boiler Feed Water</td>
<td>924</td>
<td>2.50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Catalyst and Chemicals</td>
<td>16,559</td>
<td>1.00</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>CO2 Emissions</td>
<td>3,059</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SO2 Emissions</td>
<td>5</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL UTILITIES</td>
<td>1.64</td>
<td></td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>VARIABLE MARGIN</td>
<td>4.75</td>
<td></td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>Fixed Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Labor</td>
<td>52,153</td>
<td>0.44</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Maintenance Labor</td>
<td>128,143</td>
<td>1.07</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Turnaround Accrual</td>
<td>64,071</td>
<td>0.54</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Maintenance Materials</td>
<td>64,071</td>
<td>0.54</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Operating Materials & Supplies</td>
<td>8,213</td>
<td>0.07</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Waste Disp/Environmental</td>
<td>10,951</td>
<td>0.09</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Rentals & Contract Services</td>
<td>8,213</td>
<td>0.07</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Ad Val Taxes, License, Royalty</td>
<td>24,231</td>
<td>0.20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>35,414</td>
<td>0.30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Mgmt, Profess. & Staff</td>
<td>35,162</td>
<td>0.29</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Other G&A</td>
<td>10,951</td>
<td>0.09</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>TOTAL FIXED COSTS</td>
<td>441,573</td>
<td>3.70</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>CASH MARGIN</td>
<td>1.06</td>
<td></td>
<td>126</td>
<td></td>
</tr>
</tbody>
</table>
The *PRISM* Simulator is a structured Microsoft® Excel workbook combined with an external linear programming solver used to optimize product blending. The refinery unit yield and cost assumptions are all exposed and can be easily modified by the user, if desired. The Simulator includes at least one of each of the major refinery units. In several cases, there are multiple unit models to allow dual train operations. Petrochemical unit models include steam cracking, aromatics extraction, cumene, and cyclohexane. The *PRISM* Simulator is also designed to allow customization by users including the addition of unit models not included in the standard version.

Capacities, configurations, crude slates, and operating parameters are maintained for each refinery in the *PRISM* Data Modules. These data are loaded into the Simulator for the refinery that is being analyzed. The standard *PRISM* Crude Assay Library includes detailed assay data for over 340 widely-traded and refined crude oils. The user can add additional crude oils, if desired.

Starting with the crude distillation unit, the *PRISM* Simulator models each process unit sequentially. Baker & O’Brien has established a standard process sequence, but the user is free to modify this sequence, if necessary, for any special-purpose study. Yields and detailed product qualities are calculated based on the individual refinery operating parameters retrieved from the Data Module, and feed properties are calculated in upstream unit models. Properties such as distillation, sulfur, PONA, Aniline point, viscosity, Conradson carbon residue, nitrogen, and metals are tracked in the Simulator.

The Simulator structure allows for recycle streams, and the standard Simulator includes several of these. The Simulator includes one of each type of refinery process unit. The standard Simulator is able to model any “fuels” refinery in the world, and the *PRISM* structure is flexible enough to allow customized Simulators, if required, for a special-purpose study. The procedure for cloning the standard Simulator and customizing it with additional process units, recycle streams, or modified yield correlations is easy and straight-forward.

While *PRISM* is primarily a non-linear, deterministic model, a linear programming optimizer is used to blend gasoline, distillate, and residual fuels. The Simulator includes the CARB-3 predictive model for gasoline blending.
CRUDE ASSAY BLEND OPTIMIZER

The *PRISM* Crude Assay Blend Optimizer uses an LP solver to blend crude to meet user defined crude properties. It is primarily used by crude oil traders to determine the most profitable mix of component crudes that will meet industry specifications for crude blends such as Louisiana Light Sweet (LLS) or West Texas Intermediate (WTI).

CRUDE ASSAY DIRECTOR

The *PRISM* Crude Assay Director is used to regress product property correlations from raw assay laboratory data for use with the *PRISM* Simulator. Because crude properties are stored in the *PRISM* Assay Library as a collection of correlation coefficients, crude cut points can be changed “on-the-fly” in the Simulator; it is not necessary to pre-cut crudes in an external assay tool. The Crude Assay Director is a user-friendly Microsoft® Excel workbook, and uses the Microsoft® Excel Solver to assist in regressing correlation coefficients.
CRUDE ASSAY VIEWER

The PRISM Crude Assay Viewer is a tool for displaying any of the assays in the PRISM Crude Assay Library. The Crude Assay Viewer includes graphs of all the major properties as shown below, plus a table showing the properties of individual crude cuts using user supplied cut points.

FIGURE 13

PRISM CRUDE ASSAY VIEWER

[Graph showing Kinematic Viscosity Blending Number (VBN) vs. VAPB, °F]
TRADEMARK NOTICES

PRISM is a trademark of Baker & O'Brien, Inc. All rights reserved.

Other trademarks are the property of their respective owners.
APPENDIX A. EUROPEAN DATA SERVICE (EDS) REFINERIES*

Austria
OMV-Schwechat

Belarus
Mozyr Oil-Mozyr
Naftan-Novopolotsk

Belgium
ExxonMobil-Antwerp
Gunvor (BRC)-Antwerp
Total-Antwerp
Vitol-Antwerp

Bulgaria
Lukoil-Burgas

Croatia
INA-Rijerka
INA-Sisak

Czech Republic
Czech Refining-Kralupy
Czech Refining-Litvinov

Denmark
Shell-Fredericia
Equinor-Kalundburg

Finland
Neste-Naantali
Neste-Porvoo

France
ExxonMobil-Fos-sur-Mer
ExxonMobil-Port Jerome/NDG
PetrolNeos-Lavera
Petroplus-Petit Couronne (2012)
Total-Donges
Total-Feyzin
Total-Grandpuits
Total-Normandy/Gonfreville L'Orcher
Total-Provence-La Mede (2012-2016)

Germany
Bayernoil-Vohburg/ Neustadt
BP-Lingen
Gunvor-Ingolstadt
Klesch-Heide
MiRO-Karlsruhe
OMV-Burghausen
PCK-Schwedt
BP-Gelsenkirchen
Shell-Godorf(Köln)/Wesseling
Shell-Harburg/Grasbrook
Tamoil-Holborn/Hamburg
Total-Spergau (Leuna)

Greece
Hellenic Petroleum-Thessaloniki
Hellenic Petroleum-Aspropygos
Hellenic Petroleum-Elefsina (2013+)
Motor Oil Hellas-Corinth (2013+)

Hungary
MOL-Száhalombatta

Israel
Oil Refineries Limited-Haifa
Paz-Ashdod

Ireland
Irving-Whitegate

Italy
ENI-Gela (2012-2013)
ENI-Sannazzaro
Lukoil-Prioli-Melilli
MOL-Mantova (2012-2013)
Raffineria di Milazzo-Milazzo
Saras-Sarroch
Sarpom (ExxonMobil/ERG)-San Martino di Trecate

Lithuania
PKN Orlen-Mazeikiu

Except as noted, annual data are available for 2012 through 2017.
Netherlands
BP-Europoort
ExxonMobil-Rotterdam
Gunvor-Rotterdam
Shell-Pernis
Zeeland-Vlissingen

Norway
ExxonMobil-Slagen
Equinor-Mongstad

Poland
PKN Orlen-Plock
Grupa LOTOS-Gdansk

Portugal
GALP-Porto
GALP-Sines

Romania
Rompetrol-Midia/Constanza

Saudi Arabia
SATORP-Jubail (2013+)

Slovak Republic
Slovnaft-Bratislava

Spain
ASESA-Tarragona
BP-Castellon de la Plana
IPIC-Cádiz
IPIC-Huelva
IPIC-Tenerife (2012-2015)
Petronor-Vizcaya/Bilbao
Repsol YPF-Cartagena Mucia
Repsol YPF-La Coruna
Repsol YPF-Puertollano
Repsol YPF-Tarragona

Sweden
Preem-Gothenburg
Preem-Brofjorden-Lysekil
St1-Gothenburg

Switzerland
Tamoil-Collombey (2012-2014)
Varo Energy-Cressier

Turkey
Tupras-Izmir-Aliaga
Tupras-Izmit-Tutunciftlik

Ukraine
Ukrtransnafta-Kremenchug (2012-2015)

United Kingdom
Essar-Stanlow
ExxonMobil-Fawley
Murphy-Milford Haven (2012-2014)
PetroIneos-Grangemouth
Phillips 66-Humberside
Total-Humberside
Valero-Pembroke
APPENDIX B. ASIA-PACIFIC DATA SERVICE (APDS) REFINERIES**

** Except as noted, annual data are available for 2011 through 2017.

APPENDIX B. ASIA-PACIFIC DATA SERVICE (APDS) REFINERIES

Australia
BP-QLD-Brisbane/Bulwar Island (2011-2015)
BP-WA-Kwinana
CalTex-NSW-Kurnell (2011-2014)
CalTex-QLD-Lynton
ExxonMobil-VIC-Altona
Shell-NSW-Clyde (2011-2012)
Vitol-VIC-Geelong

Canada
Chevron-BC-North Burnaby

Chile
ENAP-Acocagua
ENAP-BioBio

China
PetroChina-Gansu-Qingyang-Lanzhou
PetroChina-Guangxi-Qinzhou (Yen Chow)
PetroChina-Liaoning-Dalian
PetroChina-Xinjiang-Dushanzi
Sinopec-Guangdong-Guangzhou
Sinopec-Guangdong-Maoming
Sinopec-Shanghai
Sinopec-Shanghai-Pudong-Gaoqiao
Sinopec-Tianjin-Dagang
Sinopec-Nanjing-Jinling
Sinopec-Zhenhai-Ningbo
Wepec-Liaoning-Dalian

India
Essar-Gujarat-Jamnagar/Vadinar
HMEL-Punjab-Bhatinda
Indian Oil Co-HR-Panipat
Mangalore Refinery-KA-Mangalore
Reliance Industries-Gujarat-Jamnagar SEZ
Reliance Industries-Gujarat-Jamnagar DTA

Indonesia
Pertamina-Borneo-Balikpapan/Kalimantan
Pertamina-Java-Cilacap

Japan
Cosmo-Chiba-Ichihara
Idemitsu Kosan-Chiba-Ichihara
JX Energy/PetroChina JV-Osaka-Takaishi
JX Holdings-Okayama-Mizushima-A (NOC)
Showa-Mie-Yokkaichi
Taiyo-Ehime-Kikuma-Shikoku
Tonen-Kawasaki-Keihin

Malaysia
Malaysian Refining-Melaka
Petronas-Melaka

New Zealand
New Zealand Refining-NI-Whangarei

Philippines
Petron: PHIL-Bataan-Limay

Saudi Arabia
SATORP-Jubail (2013+)

Singapore
ExxonMobil-Jurong/Pulau Ayer Chawan
Shell-Pulau Bukom
Singapore Refining-Pulau Merlimau

South Korea
GS Caltex-Yeosu
Hyundai Oil-Daesang
SK-Incheon
SK-Ulsan
S-Oil-Onsan

Taiwan
Chinese Petroleum-Dalin
Chinese Petroleum-Tao Yuan
Formosa Plastics-Mailiao

Thailand
SPRC-Rayong
Esso Thailand-Sriracha
Thai Oil-Sriracha
Vietnam
PetroVietnam-Dung Quat

United States

BP-Cherry Point, WA
Chevron-El Segundo, CA
Chevron-Richmond, CA
Island Energy-Barbers Point, HI
PBF Energy-Torrance, CA
Phillips 66-Ferndale, WA
Phillips 66-Santa Maria/Rodeo, CA
Phillips 66-Wilmington, CA
Shell-Anacortes, WA
Shell-Martinez, CA
Par-Kapolei, HI
Marathon-Anacortes, WA
Marathon-Carson, CA
Marathon-Kenai, AK
Marathon-Martinez, CA
Marathon-Wilmington, CA
Valero-Benicia, CA
Valero-Wilmington, CA
APPENDIX C. CRUDE ASSAY LIBRARY

Algeria
Algerian Condensate 68.7 [2008]
Algerian Condensate 62.6 [1984]
Arzew 45.0
Zarzaitine 42.6

Angola
Cabinda 32.3 [1993]
Cabinda 32.7
CLOV 33.3
Dalia 23.0
Dalia 23.1 [2009]
Girassol 30.3
Girassol 31.0 [2004]
Kissanje 30.5
Kuito 19.2 [2000]
Kuito 22.0
Nemba 39.9
Palanca 38.4
Pazflor 24.2

Argentina
Canedon Seco 26.9
Hidra 46.8 [2002]
Hidra 51.7
Medanito 32.9
Rincon 36.8

Australia
Cossack 49.1
Gippsland 45.5 [1983]
Gippsland 48.7

Austria
Austrian Light 35.9

Azerbaijan
Azerbaijan Light 36.7 [2009]
Azerbaijan Light 34.8 [2005]

Brazil
Frade 18.0
Marlim 19.8 [2000]
Marlim 21.2 [1998]
Peregrino 13.4
Polvo 20.3

Brunei
Seria Light 34.5

Cameroon
Kole 31.5
Lokele 20.5

Canada
Access Western Blend 21.8
Albian Heavy 19.5
Albian Premium 35.6
BC Light 40.4
Bitumen (Ft McMurray) 10.8
Bow River 21.9
Bow River 24.5 [1995]
Bow River 26.8 [1969]
Bow River South 23.2
Canadian Condensate 54.2
Canadian Synthetic 34.2
Cheecham Dil-Bit 21.5
Christina Lake 21.0
Cold Lake Bln 19.4 [2006]
Cold Lake Bln 19.7
Cold Lake Bln 21.0 [2001]
Cold Lake Bln 21.8 [2001]
Enbridge CHV Pool 20.6
Enbridge HSC Pool 32.8
Enbridge LSB Pool 37.9
Enbridge MSB Pool 34.1
Enbridge PCH Pool 23.1
Enbridge PSY Pool 33.3
Enbridge SYB Pool 20.2
Enbridge SYN Pool 33.1
Fosterton 20.9
Hardisty Heavy 23.2
Hibernia 35.9
Hibernia 36.2 [1998]
Canada (con’t)
IPL Sour 34.7
IPL Sweet (MSW) 38.9
Kearl Lake 20.3
Kearl Lake 22.6 [2014]
Light Sour Blend 34.9
Lloydminster 21.3
Lloydminster 22.3 [1995]
Medium Sour (MSO) 31.7
Midale Cromer 28.4
Mixed Sour (Hardisty) 28.3
Peace River Heavy 23.2
Rail-Bit 14.1
Rainbow Lake 39.4
Rainbow Lake 40.7 [1988]
Sable Island Condensate 45.5
Suncor OCC 20.2
Suncor OSA 33.7
Suncor OSE 21.7
Suncor OSH 19.6
Suncor Virgin Sour 21.7
Sunrise Dilbit 21.0
Surmont Heavy 19.0
Syncrude SSB 30.8
Syncrude SSP 34.4
Terra Nova 32.1 [2004]
Terra Nova 33.2
Western Canadian Select 20.3
White Rose 29.8

Chad
Doba 20.5
Doba 25.7

China
Daquig 32.5
Nanhai Light 39.5
Peng Lai 21.8
Qin Huang Dao 16.5
Shengli 24.2

Colombia
Cano Limon 29.7
Castilla 14.0
Castilla Blend 18.9
Cupiaga 43.1
Cusiana 37.3 [1995]
Cusiana 41.2 [2001]
Cusiana 42.6 [2006]
Vasconia 24.3 [2007]
Vasconia 26.5 [1992]

Congo
Djeno 27.4
N’Kossa Swt 41.3

Denmark
DUC 34.8

Ecuador
Fanny 22.3
Napo 18.9
Oriente 24.8

Egypt
Belayim Marine 27.7
Gulf of Suez 31.4
Ras Gharib 22.5
Western Desert 41.0

Equatorial Guinea
Zafiro 29.5

Gabon
Mandjii 29.5
Rabi Light 33.3

Germany
German Inland 26.5
Mittelplate 22.7
South German Heavy 22.7

Guatemala
Guatemala 16.0
Indonesia
Ardjuna 38.1
Arun Condensate 55.0 [1986]
Arun Condensate 58.2
Attaka 40.8
Duri 21.0
Handil 33.2
Lalang 39.4
Minas 33.9
Minas 35.1 [1997]

India
Bombay High 39.3

Iran
Sirri 33.4
South Pars Condensate 58.4

Iraq
Basrah Heavy 23.5
Basrah Light 30.2
Basrah Light 33.0 [1999]
Kirkuk 33.1
Mishrif 28.1
TaqTaq Heavy 23.7

Italy
Gela 14.5

Kazakhstan
CPC Blend 43.3 [2005]
CPC Blend 47.7 [1998]

Kuwait
Eocene 18.7
Kuwait Export 32.0
Kuwait Export 29.7
Ratawi 24.5

Libya
Al Jurg 30.3
Bu Attifel 4364
El Sharara 42.3
Es Sider 36.3

Malaysia
Labuan 32.1
Tapis Blend 44.9 [1987]
Tapis Blend 45.5 [c2000]

Mauritania
Chinguetti Sweet 28.3

Mexico
Altamira 14.5
Isthmus 32.2
Maya 21.9
Olmeca 39.2

Nigeria
Agbami 48.0
Akpo 45.9
Amenam 40.9
Bonga Sweet 29.1
Bonny Light 34.8 [1989]
Bonny Light 35.1
Bonny Light 35.8 [2000]
Bonny Medium 25.8
Brass River 37.3 [2011]
Brass River 40.1
Brass River 42.8 [1983]
Escravos 34.4
Forcados 29.6 [1999]
Forcados 31.6
Oso Condensate 47.4
Qua Iboe 35.2
Yoho 40.1
Norway
Aasgard Condensate 50.6
Alba 20.1
Atm Resid (Oseburg) 18.2
Ekofisk 37.7 [1999]
Ekofisk 37.8
Ekofisk 39.8 [1983]
Grane 18.7
Gullfaks 28.9 [1986]
Heidrun 25.0
Oseberg 34.2 [c1997]
Oseberg 35.9 [2004]
Oseberg 37.6 [2000]
Oseberg 38.6
Sleipner Condensate 59.8
Statfjord 39.4
Troll 31.1 [2006]
Troll 35.9

Oman
Oman 30.4
Oman 31.2 [2011]
Oman 33.9 [1968]

Peru
Loreto 18.9 [2000]
Loreto 21.5 [1994]
Mayna 25.7

Papua New Guinea
Kutubu Light 45.1

Qatar
Al Rayyan 24.8
Al Shaheen 28.0

Russia
E4/A960 18.3
ESPO 34.7
Siberian Light 34.7
SOKOL 38.0
Urals 31.8 [2002]
Urals 34.6 [1983]

Saudi Arabia
Arab Berri 36.2
Arab Heavy 28.7
Arab Light 32.5
Arab Medium 29.6

Singapore
Atm Resid (Tapis)

Sudan
Dar Blend 26.4
Nile Blend 32.8

Syria
Souedie 24.1
Syrian Light 38.1

Trinidad and Tobago
Calypso 30.8

United Arab Emirates
Das Blend 39.1
Dubai 30.4
Margham Condensate 50.3
Murban 39.6

United Kingdom
Brent Blend 37.5 [1992]
Brent Blend 37.5 [2011]
Brent Blend 37.8 [1987]
Brent Blend 38.5 [1999]
Clair 23.6
Flotta 36.4
Forties 38.3 [c1983]
Forties 38.7 [2011]
Forties 40.3 [2007]
Forties 42.1 [2000]
Schiehallion 25.5
Wytch Farm 41.2
United States
Alabama Light Sour 38.6
Alabama Light Sweet 37.4
Alabama-Mississippi ExtrHy 9.9
Alabama-Mississippi Hvy 13.5
Alabama NS 29.5 [1995]
Alabama NS 31.4 [2011]
Alabama NS 32.3 [2003]
Altamont P/L Mix 40.4
Arkansas Hvy 23.8
Arroyo Grande 14.8
Bakken 38.4
Bakken 40.9
Bakken 43.3
Bonito Sour 34.2
Cat Canyon 14.5
Central Montana 43.0
Colorado East 38.6
Colorado West 42.3
Cook Inlet 39.4
Corning Grade 35.0
D-J Basin 48.0
East Texas 40.0
Eagle Ford 41.0
Eagle Ford 44.6 [2011]
Eagle Ford 46.6
Eagle Ford Condensate 59.8
Eagle Ford Condensate 59.8 [2015]
Eugene Island Sour 31.7
Four Corners Sweet 40.8
Hondo 19.6
HOOPS 31.6
Huntington Beach 20.6
Illinois Basin 38.6
Jay Smackover 50.3
Kansas Common 42.0
Kansas Sweet 28.4
LA Basin Light 31.8
Line 63 29.8
Louisiana Hvy Sweet 32.4
Louisiana Lt Sweet 36.5

United States (con’t)
Main Pass 22.4
Mars 28.9 [2008]
Mars 29.6 [2001]
Mars 31.1 [1996]
Michigan Sour 33.6
NE Montana Sweet 40.9
New Mexico Sour 38.6
Niobrara 39.8
NM Intermediate 38.6
Ohio Grade 43.0
Oklahoma Sweet 38.6
Pennsylvania Grade 43.0
Permian Basin 42.2
Poseidon 30.0 [2010]
Poseidon 29.1 [2008]
Poseidon 31.5 [2000]
Pt. Arguello 20.4
San Joaquin Valley Hvy 14.5
San Joaquin Valley Lt 35.9
SE Kansas/NE Okla 38.6
South Texas 50.6
Southern Green Canyon 30.5
Sunniland 23.8
SW Wyoming Swt 45.0
Texas Coastal West 44.6
Thunder Horse 34.5
Utah Black Wax 35.1 [2012]
Utah Black Wax 40.4 [2009]
Utah Light 41.6
Utica Condensate 65.0
Utica Light 52.3
West Texas Intermediate 38.6
West Texas Intermediate 42.0
West Texas Sour 33.6
Wilmington/THUMS 17.2
Wyoming Sour 24.4
Wyoming Sweet 32.0
Wyoming Sweet 40.8 [1971]
Venezuela
Bachaquero 13.5
Bachaquero 17.5
BCF 16.1
Boscan 9.9
Cerro Negro 16.0
Furrial 29.6
Hamaca Blend 25.9
Leona 25.6
Leona Exp 21.5
Merey 16.9
Mesa 30.0
Mesa/TJ Light 32.2
Petrozuata Heavy 19.8
Santa Rosa Condensate 51.6
Venezuela Syn-Bit 15.1
Zuata Medium VR10 28.7
Zuata Medium VR20 25.6
Zuata Sweet 32.0 [2002]
Zuata Sweet 32.3 [2000]

Vietnam
Bach Ho 39.2

Yemen
Marib Light 46.0
Masila 31.4