Assessing the Impact of the Changing Crude Oil Landscape in North America

Baker & O’Brien, Inc.

November 5, 2013
Discussion Topics

- Introduction
- U.S. and Canada Sulfur Production Trends and Overview
- Crude Oil / Refining Evaluation Framework
 - U.S Refining Inputs of Sulfur
 - U.S. Heavy Oil Conversion Activity (Coking)
 - Fuel Regulatory Impacts
- Outlook
Introducctio

Baker & O’Brien: Independent Energy Consultants

Overview
- Independently owned and managed
- Technical and commercial expertise
- Active over full life cycle of assets: new project development -> business support -> commercial disputes

Consulting Staff
- Chemical, mechanical, and electrical engineers
- Consultants average over 25 years industry experience
- Experienced problem solvers
U.S. and Canada Sulfur Production Trending Down Amid Global Growth

- U.S. and Canada declines both driven by reduced sour gas processing

U.S., Canada, and Global Sulfur Production Trends, million tonnes/year

Sources: U.S. Geological Survey, (USGS), Natural Resources Canada, Baker & O’Brien analysis
U.S. is net short sulfur; primary import sources are Canada (80+% and Mexico (12%). Refineries account for 88% of produced supply; gas plants only account for 12%.

U.S. Sulfur Balance – 2012 (000 tonnes)

- **Exports**: 1,850
- **Consumption**: 9,490
- **Imports**: 2,930
- **Refineries**: 7,320
- **Gas Plants**: 1,040

Supply Sources

Disposition

Sources: USGS, Baker & O’Brien analysis
Trends & Overview

- Sulfur from gas processing has trended lower with declining conventional production
- Refinery sulfur production has been generally flat

U.S. Sulfur Production, 000 tonnes per year

Source: USGS
• Sour natural gas and oil sands upgrading are primary sources
• Sulfur production greatly exceeds domestic needs; excess sulfur is exported

Canada Sulfur Balance Overview

Canada Sulfur Balance – 2012 (000 tonnes)

Supply Sources

- Refineries 460
- Oil Sands Upgraders / Heavy Refineries 2,200
- Gas Plants 2,900

Recent Trends

Disposition

- Exports 4,650
- Consumption 850

Sources: Natural Resources Canada, Canadian Association of Petroleum Producers, PentaSul, Baker & O’Brien analysis
Canada Sulfur Production Decline Driven By Declining Gas Production

- Sulfur produced from gas processing has declined by about 45%
- Sulfur from heavy oil upgrading has continued to grow
- Total Canada gas production has declined 17% in the past 5 years (2007-2012); Alberta gas production has declined 24% over the same period

Sources: Natural Resources Canada, CAPP, PentaSul, Baker & O’Brien analysis
• U.S. refining accounts for over 50% of total production, followed by Canadian sour gas (20%) and oil sands upgraders (15%)

U.S. and Canada Sulfur Production Summary, 000 tonnes

Sources: Natural Resources Canada, CAPP, PentaSul, EIA, USGS, Baker & O’Brien analysis
PADD 3 accounts for over 60% of total sulfur production, driven by refinery processing capacity and gas production sources.

U.S. Sulfur Production by PADD in Q1 2013, 000 tonnes

<table>
<thead>
<tr>
<th>PADD 3</th>
<th>PADD 2</th>
<th>PADD 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,120</td>
<td>263</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend
- Sulfur from natural gas processing, 000 tonnes
- Sulfur from petroleum refining, 000 tonnes

Sources: EIA, USGS, Baker & O’Brien analysis
U.S. Refining System Sulfur Balance - 2012

<table>
<thead>
<tr>
<th>Inputs</th>
<th>000 tonnes</th>
<th>% of Total Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Oil</td>
<td>10,856</td>
<td>98%</td>
</tr>
<tr>
<td>Feedstocks</td>
<td>246</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>11,102</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemental Sulfur</td>
<td>7,320</td>
<td>66%</td>
</tr>
<tr>
<td>Petcoke</td>
<td>2,220</td>
<td>20%</td>
</tr>
<tr>
<td>Asphalt</td>
<td>794</td>
<td>7%</td>
</tr>
<tr>
<td>Other</td>
<td>372</td>
<td>3%</td>
</tr>
<tr>
<td>Residual Fuel Oils</td>
<td>322</td>
<td>3%</td>
</tr>
<tr>
<td>Light Refined Products</td>
<td>75</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>11,102</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Two-thirds of sulfur input to the U.S. refining system is recovered as elemental sulfur.
- Other large sulfur “sinks” include petcoke (20% of inputs) and asphalt (7%).
- Gasoline, diesel, heating oil, jet fuel account for less than 1%; jet fuel is about 60% of the total.

Sources: PRISM refinery database system, Baker & O’Brien analysis
Refinery sulfur production is a function of crude slate and configuration

- Large coking refineries produce sulfur volumes that are 1-2 orders of magnitude higher than simpler refineries
- For most refineries, recovered sulfur will likely be in the range of 60-70% of input sulfur, unless there are large yields of asphalt and residual fuel oil.

Refinery Sulfur Balances Dominated by Heavy Sour Coking Refineries

<table>
<thead>
<tr>
<th>Refinery Type</th>
<th>Refinery A</th>
<th>Refinery B</th>
<th>Refinery C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemental Sulfur, 000 tonnes/year</td>
<td>327</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Fraction of Total U.S.</td>
<td>4.5%</td>
<td>0.3%</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Sulfur Disposition, % of input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elemental Sulfur</td>
<td>64%</td>
<td>38%</td>
<td>70%</td>
</tr>
<tr>
<td>Petcoke, Asphalt, Fuel Oil</td>
<td>36%</td>
<td>62%</td>
<td>21%</td>
</tr>
<tr>
<td>Light Transportation Fuels</td>
<td>0.3%</td>
<td>0.6%</td>
<td>8.8%</td>
</tr>
</tbody>
</table>

Sources: PRISM refinery database system, Baker & O’Brien analysis
A. Total Inputs of Sulfur
 - Refinery run rates
 - Global supply/demand
 - U.S. competitive advantage
 - Crude slate sulfur levels
 - U.S. growth of light/sweet
 - Canadian oil sands growth
 - Heavy/Sour imports

B. Conversion of Bottom of Barrel
 - Coker; refinery expansion projects
 - Pet coke gasification

C. Sulfur Regulatory Activity
 - EPA Tier 3 (gasoline)
 - Northeast States Heating Oil
A. Inputs

Crude Oil Dynamics in Americas Impacting the Sulfur Supply Equation

• Country crude oil production profiles will influence the sulfur production outlook, among other factors

 – Growing: U.S., Canada, Colombia, Brazil
 – Flat-to-Declining: Mexico, Venezuela, Ecuador
Changes in the U.S. and Canada Most Impactful

Petroleum Production, MMB/D

Growing Regions
- Colombia
- Brazil
- Canada
- United States

Flat or Declining Regions
- Ecuador
- Venezuela
- Mexico

Source: EIA
A. Inputs

Sulfur Inputs to U.S. Refineries Rebounding to 2008 Levels

- Generally flat crude slate sulfur content within range of 1.4-1.5 wt%

- Generally flat crude oil charge rates around 15 million B/D

Sources: EIA, Baker & O’Brien analysis
PADD Crude Slate Sulfur Trends Have Been Mixed

- Overall U.S. sulfur content has been relatively flat and slightly increasing
- PADD 3 sulfur content has been declining, but PADDs 2, 4, and 5 have been increasing

Sources: EIA, Baker & O’Brien analysis
The top five crude oil source countries – Canada, U.S., Venezuela, Saudi Arabia, and Mexico – account for 85% of total sulfur inputs.

Future projections a “mixed” bag: increased imports of heavy, sour diluted bitumen from Canada, offset to some degree by low-sulfur tight oil production growth.

Sources of Sulfur Inputs (Q1 2013) and Expected Trends

- **Canada**: Increasing heavy, sour grades.
- **USA**: Increasing sweet (Bakken, Eagle Ford, Permian).
- **Venezuela**: Flat to declining production.
- **Saudi Arabia**: Flat to declining imports; lighter grades displaced.
- **Kuwait**: Declining imports.
- **Mexico**: Declining imports?
- **Ecuador**: Flat to declining production.
- **Iraq**: Declining imports?
- **All Others**: Increasing sour (GOM, Permian), but less so than sweet grades.

Sources: EIA, PRISM refinery database system, Baker & O’Brien analysis.

U.S. Crude Oil Production Trends

Source: EIA
A. Inputs

Outlook for U.S. and Canada Crude Oil Production

- U.S. production may exceed 10 MMB/D early next decade before peak/plateau
- Combined with Canada, incremental growth of over 5 MMB/D expected vs. 2013

U.S. and Canada Supply Outlook

Note: Canadian crude oil supply includes diluent which is imported for blending of DilBit (diluent/bitumen blend).

Sources: Canadian Association of Petroleum Producers, (CAPP), Baker & O’Brien analysis
Drastically Changing North American Crude Mix

- Over the near term (to 2015), the U.S. will see more light-sweet grades and heavy-sour grades, displacing medium grades.
- After 2015, light supplies grow further as heavy oil runs plateau.
- Sulfur input into the U.S. refining system increases.

Sulfur Input Changes, 000 tonnes/year

<table>
<thead>
<tr>
<th>Changes vs. 2012</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-Sweet Grades</td>
<td>96</td>
<td>133</td>
</tr>
<tr>
<td>Medium Grades</td>
<td>(1,286)</td>
<td>(1,930)</td>
</tr>
<tr>
<td>Heavy-Sour Grades</td>
<td>1,560</td>
<td>1,949</td>
</tr>
<tr>
<td>Difference</td>
<td>370</td>
<td>153</td>
</tr>
</tbody>
</table>

Source: Baker & O'Brien analysis
Refiners Shifting Gears to Process More Light-Sweet

- **Flint Hills (Corpus Christi) and Valero (Corpus Christi, Houston)** are early movers

<table>
<thead>
<tr>
<th>Company-Location</th>
<th>Investment</th>
<th>Timing</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint Hills-Corpus Christi</td>
<td>$250 MM</td>
<td>2015</td>
<td>Sat gas plant; new and modified tankage; only modest increase to existing capacity</td>
</tr>
<tr>
<td>Valero-Corpus Christi</td>
<td>$240 MM</td>
<td>Late 2015</td>
<td>70 MB/D topping unit</td>
</tr>
<tr>
<td>Valero-Houston</td>
<td>$290 MM</td>
<td>Late 2015</td>
<td>90 MB/D topping unit</td>
</tr>
<tr>
<td>Valero-McKee</td>
<td></td>
<td>Mid 2015</td>
<td>25 MB/D expansion</td>
</tr>
<tr>
<td>Valero-Meraux, Port Arthur</td>
<td></td>
<td></td>
<td>Evaluating low-cost projects to unlock light crude oil capacity</td>
</tr>
<tr>
<td>Lyondell-Houston</td>
<td></td>
<td></td>
<td>Minor modifications during Q1 2013 turnaround to increase light crude oil capacity</td>
</tr>
<tr>
<td>Marathon – Texas City</td>
<td></td>
<td></td>
<td>Will discuss modifications at investor day meeting in December</td>
</tr>
<tr>
<td>Phillips 66-Lake Charles, Sweeny</td>
<td></td>
<td></td>
<td>Making modifications to enable processing of more advantaged crude oil</td>
</tr>
</tbody>
</table>
Record Coking Margins and Anticipated Oil Sands Growth Drove Massive Investments in Delayed Cokers

• Over $30 billion has been invested in U.S. coker-related refinery expansions over the past 5-7 years

Historical Perspectives on Light-Heavy Spreads and Coking Margins

Historically, high margins triggered a "super-cycle" in conversion and expansion investments.

Sources: Platts, Baker & O'Brien Analysis

B. Conversion
However, Limited Availability of Heavy Oil Has Resulted in Poor Coking Margins

- Declining imports from Mexico, Venezuela have contributed to under-utilized cokers
- Growth in Canada, Colombia, and Brazil have helped to offset decline somewhat, but have not been enough to fill current and projected coking capacity

U.S. Crude Oil Imports from Countries with Heavy Oil, MB/D

Source: EIA
B. Conversion

Refiners Anticipated Higher Sulfur Recovery Needs

- Deep conversion (coking) projects were developed in anticipation of increased heavy oil production in Canada and, generally, to increase competitiveness
- These projects required extensive increases to sulfur removal capacity
- However, sulfur production has been relatively flat and utilization of SRU capacity has trended lower

U.S. Refinery Sulfur Capacity & Production

Sources: EIA, Baker & O’Brien analysis
B. Conversion

Sulfur Production to Grow Further After Last of Large Expansion Projects are in Operation

- Sulfur production should increase by 300,000-400,000 tonnes/yr (4-5% of total U.S.) once design rates are achieved at Motiva Port Arthur and BP Whiting.

U.S. Refinery Sulfur Production, 000 tonnes/year
(Top 65 refineries shown, accounting for 95% of total sulfur)

Sources: PRISM refinery database system, Baker & O’Brien analysis
Asphalt and fuel oil production have declined while petcoke production (coking) is only slightly above levels from 8 years ago. Availability of heavy crude oil has limited coker throughputs.
C. Regulatory

Regulatory Factors Not Likely to “Move the Needle” on Total Sulfur Production in Medium Term

- **Light Products**
 - Reduced sulfur in home heating oil (driven primarily by northeast states)
 - Reduced sulfur in gasoline (EPA Tier 3)
 - Although highly impactful to refinery capital requirements, the total sulfur contained in all light refined products (including jet fuel and high-sulfur exports) is less than 1% of total supply

- **Reduced Sulfur in Bunker Fuels**
 - By 2015, sulfur content of marine fuel oil consumed in certain emission control areas must be reduced to 0.1% from current 1%
 - By 2020 aggressive reductions in bunker fuel sulfur levels are being sought: targeting 0.5% vs. 3.5% (current sulfur levels), subject to a feasibility review to be completed no later than 2018.
 - Sulfur in global bunker volumes (3.5% down to 0.5%) estimated at 8 million tonnes/yr or ~11% of global sulfur production
 - Potential to be highly impactful to global supply-demand; however, seems likely that timeline will be extended
A. Total Inputs of Sulfur
 – Refinery run rates to get marginally higher with Motiva Port Arthur at full steam, expansion “creep” projects, and small new-builds
 – Crude slate sulfur levels to go up in near term and decline slightly in outer years

B. Conversion of Bottom of Barrel
 – The last two mega-projects will result in sulfur production increases in near-term, but that will be the end of the investment cycle for a while

C. Sulfur Regulatory Activity
 – Not impactful over medium term
Dynamic Shifts in Refining, but…

Relatively Static Total Sulfur Output

- U.S. refinery and Canadian upgrader sulfur production should trend higher with increased heavy oil processing and reduced imports of lower-sulfur grades
- Natural gas sulfur production expected to continue to trend lower
- Total sulfur production likely to continue slow decline

U.S. and Canada Sulfur Production Outlook, 000 tonnes

- **Upgrading-Can**
- **Gas Proc-Can**
- **Refining-Can**
- **Gas Proc-US**
- **Refining-US**

Source: Baker & O’Brien analysis
Baker & O’Brien: Independent Energy Consultants

Dallas
12001 N. Central Expressway,
Suite 1200
Dallas, TX 75243
Phone: 1-214-368-7626
Fax: 1-214-368-0190

Houston
1333 West Loop South
Suite 1350
Houston, TX 77027
Phone: 1-832-358-1453
Fax: 1-832-358-1498

London
146 Fleet Street
London EC4A 2BU
Phone: 44-20-7373-0925

Celebrating a Tradition of Service

www.bakerobrien.com